organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nobuo Okabe,* Hasuyo Kyoyama and Misato Suzuki

Faculty of Pharmaceutical Sciences, Kinki University, Kokawae 3-4-1, Higashiosaka, Osaka 577-8502, Japan

Correspondence e-mail: okabe@phar.kindai.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C-C}) = 0.005 \text{ Å}$ R factor = 0.049 wR factor = 0.188 Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Gallic acid monohydrate

In the crystal structure of the title compound, 3,4,5-trihydroxybenzoic acid monohydrate, $C_7H_6O_5$ ·H₂O, the gallic acid molecule is essentially planar and has two intramolecular hydrogen bonds between hydroxyl groups. The H atoms of the three hydroxyl groups are oriented in the same direction around the ring, and form intra- and intermolecular hydrogen bonds. The crystal structure is stabilized by all available intermolecular hydrogen bonds, including also those involving the water molecule.

Comment

Gallic acid, 3,4,5-trihydroxybenzoic acid, is a naturally occurring plant phenol which has antitumor and anti-oxidative activity. It induces apotosis in the human myelogenous leukemic cell line (Sakaguchi *et al.*, 1999; Satoh & Sakagami, 1997). Therefore the determination of its crystal structure is important for the structural clarification of its biological function. Recently the crystal structure was determined in a monohydrate form by Jiang *et al.* (2000). We have now determined its structure as a different monohydrated form, (I). Received 1 June 2001 Accepted 17 July 2001 Online 27 July 2001

The molecular structure of (I) is essentially planar, as shown in Fig. 1. In the molecule, all the H atoms of the three hydroxyl groups are oriented in the same direction around the ring, forming two intramolecular hydrogen bonds between a pair of hydroxyl groups at positions 3 and 4, and at positions 4 and 5. The hydroxyl groups at positions 3 and 4 are also linked to the water-O atom and to the hydroxyl-O atom of a neighbouring molecule by a bifurcated hydrogen bond. This hydrogenbonding scheme is different from that reported by Jiang *et al.* (2000), in which only one intramolecular hydrogen bond is present, and one of the three H atoms of the hydroxyl groups is oriented in the reverse direction to the others. Furthermore, a hydrogen bond is formed between the carboxyl groups in the

 \bigcirc 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

ORTEPII (Johnson, 1976) drawing of the title compound with the atomic numbering scheme. Ellipsoids for non-H atoms correspond to 50% probability.

previous structure, but this interaction is not present in the structure reported here. All of the possible hydrogen bonds are present as either intra- or intermolecular interactions, as shown in Table 2. The two different crystal structures and hydrogen-bonding schemes observed for gallic acid mono-hydrate may have a role in the biological function of this compound.

Experimental

The crystal was obtained by slow evaporation of an ethanol solution.

Crystal data C₇H₆O₅⋅H₂O

 $M_r = 188.13$ Monoclinic, P2/n a = 14.15(1) Å b = 3.622 (9) Åc = 15.028 (10) Å $\beta = 97.52(7)^{\circ}$ $V = 764 (1) \text{ Å}^3$ Z = 4Data collection Rigaku AFC-5R diffractometer ω –2 θ scans Absorption correction: none 2109 measured reflections 1766 independent reflections 764 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.188$ S = 0.911766 reflections 118 parameters $D_x = 1.636 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 18 reflections $\theta = 10.0-14.3^{\circ}$ $\mu = 0.15 \text{ mm}^{-1}$ T = 296.2 KNeedle, colorless $0.50 \times 0.10 \times 0.03 \text{ mm}$

 $\begin{array}{l} \theta_{\max} = 27.5^{\circ} \\ h = 0 \rightarrow 18 \\ k = -4 \rightarrow 0 \\ l = -19 \rightarrow 19 \\ 3 \text{ standard reflections} \\ \text{every 150 reflections} \\ \text{intensity decay: } 0.1\% \end{array}$

H-atom parameters not refined $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.31 \text{ e} \text{ Å}^{-3}$

Table 1		
Selected geometric parameters	; (Å, °]).

O1-C7	1.317 (5)	C1-C6	1.380 (5)
O2-C7	1.203 (5)	C1-C7	1.487 (5)
O3-C3	1.373 (4)	C2-C3	1.376 (4)
O4-C4	1.370 (4)	C3-C4	1.391 (5)
O5-C5	1.372 (4)	C4-C5	1.390 (5)
C1-C2	1.396 (5)	C5-C6	1.377 (4)
C2 - C1 - C6	119.7 (3)	C3-C4-C5	119.3 (3)
C2 - C1 - C7	122.2 (3)	O5-C5-C4	116.8 (3)
C6-C1-C7	118.0 (3)	O5-C5-C6	124.0 (3)
C1-C2-C3	119.3 (3)	C4-C5-C6	119.6 (3)
O3-C3-C2	119.8 (3)	C1-C6-C5	121.0 (3)
O3-C3-C4	119.2 (3)	O1-C7-O2	122.6 (3)
C2-C3-C4	121.0 (3)	O1-C7-C1	113.5 (3)
O4-C4-C3	117.4 (3)	O2-C7-C1	123.8 (3)
O4-C4-C5	123.2 (3)		
O1-C7-C1-C2	2.7 (5)	O5-C5-C4-C3	-178.9 (3)
O1-C7-C1-C6	178.6 (3)	O5-C5-C6-C1	177.2 (3)
O2-C7-C1-C2	-175.3 (4)	C1-C2-C3-C4	-1.9(6)
O2-C7-C1-C6	0.2 (6)	C1-C6-C5-C4	-1.5 (6)
O3-C3-C2-C1	-179.0(3)	C2-C1-C6-C5	1.4 (6)
O3-C3-C4-O4	-0.2(5)	C2-C3-C4-C5	1.8 (6)
O3-C3-C4-C5	179.0 (3)	C3-C2-C1-C6	0.3 (6)
O4-C4-C3-C2	-177.3 (3)	C3-C2-C1-C7	175.7 (4)
O4-C4-C5-O5	0.9 (5)	C3-C4-C5-C6	-0.1(6)
04-C4-C5-C6	178.9 (4)	C5-C6-C1-C7	-174.2 (4)

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3-H3···O4	0.850	2.328	2.692 (8)	106.3
$O4-H4\cdots O5$	0.945	2.306	2.752 (8)	108.9
$O3-H3\cdots O6^{i}$	0.850	1.949	2.770 (4)	161.6
$O4-H4\cdots O5^{ii}$	0.945	1.907	2.767 (8)	150.0
O5−H5···O2 ⁱⁱⁱ	0.851	1.878	2.729 (4)	177.7
O6−H7···O4 ⁱⁱ	0.820	2.182	2.977 (4)	163.8
$O6-H8\cdots O3^{iv}$	0.812	1.941	2.747 (4)	170.9
$O1{-}H1{\cdots}O6^{iii}$	0.830	1.859	2.686 (4)	174.2

Symmetry codes: (i) $\frac{1}{2} - x, y - 1, \frac{1}{2} - z$; (ii) $\frac{1}{2} - x, y, \frac{1}{2} - z$; (iii) 1 - x, 1 - y, 1 - z; (iv) $\frac{1}{2} + x, -y, z - \frac{1}{2}$.

All H atoms were located from difference Fourier maps and were not refined.

Data collection: *MSC* /*AFC* Diffractometer Control Software (Molecular Structure Corporation & Rigaku Corporation, 1999); cell refinement: *MSC/AFC* Diffractometer Control Software; data reduction: *TEXSAN* (Molecular Structure Corporation & Rigaku Corporation, 1999); program(s) used to solve structure: *SIR88* (Burla et al., 1989) and DIRDIF (Beurskens et al., 1992); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: *TEXSAN*.

References

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smith, J. M. M. & Smykalla, C. (1992). *DIRDIF*. University of Nijmegen, The Netherlands.
- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–403.

Johnson, C. K. (1976). ORTEPII. Oak Ridge National Laboratory, Tennessee, USA.

- Molecular Structure Corporation & Rigaku Corporation (1999). MSC/AFC Diffractometer Control Software and TEXSAN (Version 1.10). MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku, 3-9-12 Akishima, Tokyo, Japan.
- Jiang, R.-W., Ming, D.-S., But, P. H. P. & Mak, T. C. W. (2000). Acta Cryst. C56, 594–595.

- Satoh, K. & Sakagami, H. (1997). Anticancer Res. 17, 2181–2184. Sakaguchi, N., Inoue, M., Isuzugawa, K., Ogihara, Y. & Hosaka, K. (1999). Biol. Pharm. Bull. 22, 471-475.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.